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Ratio-based multi-temporal SAR images denoising
Weiying Zhao, Loı̈c Denis, Charles-Alban Deledalle, Henri Maı̂tre, Jean-Marie Nicolas,

Florence Tupin, Senior Member, IEEE

Abstract—In this paper, we propose a generic multi-temporal
SAR despeckling method to extend any single-image speckle
reduction algorithm to multi-temporal stacks. Our method,
RAtio-BAsed multi-temporal SAR despeckling (RABASAR), is
based on ratios and fully exploits a “super-image” (i.e. temporal
mean) in the process. The proposed approach can be divided into
three steps: 1) calculation of the “super-image” through temporal
averaging; 2) denoising the ratio images formed through dividing
the noisy images by the “super-image”; 3) computing denoised
images by multiplying the denoised ratio images with the “super-
image”. Thanks to the spatial stationarity improvement in the ra-
tio images, denoising these ratio images with a speckle-reduction
method is more effective than denoising the original multi-
temporal stack. The data volume to be processed is also reduced
compared to other methods through the use of the “super-
image”. The comparison with several state-of-the-art reference
methods shows numerically (peak signal-noise-ratio, structure
similarity index) and visually better results both on simulated and
real SAR stacks. The proposed ratio-based denoising framework
successfully extends single-image SAR denoising methods in
order to exploit the temporal information of a time series.

Index Terms—Multi-temporal SAR series, ratio image, super-
image, SAR, speckle reduction

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) imaging is widely used
in monitoring land surfaces, disasters or the environment,

due to its advantages of all-time acquisition capability, its
sensitivity to geometric structures, its penetration characteris-
tics, etc. However, the system-inherent speckle noise visually
corrupts the appearance of images and severely diminishes
the analysis and interpretation of SAR images. Therefore, a
preliminary speckle reduction step is often necessary for the
successful exploitation of SAR images.

The main problems of SAR image despeckling are spa-
tial resolution preservation, edge and texture restoration, and
point-like targets preservation. Spatial multilooking is a com-
mon way of reducing speckle fluctuations in a single SAR
image, at the cost of a significant spatial resolution loss
[1]. To effectively estimate the noise-free reflectivity as well
as preserve the spatial resolution, many single-channel SAR
speckle reduction methods have been proposed during the past
decades. Detailed introductions of the methods are given by
Touzi et al. [2], Argenti et al. [1] and Deledalle et al. [3].
These methods mainly belong to four categories: Bayesian
methods in the spatial domain (Lee filter [4], Lee refined
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filter [5]), Bayesian methods in a transformed domain [6],
selection-based filtering (IDAN [7], PPB [8] and NL-SAR
[9]) and sparse-based approaches [10]. Most of the single-
SAR-image denoising methods are designed through the com-
bination of using different domain information (spatial domain
or transformed domain), with different estimation criteria and
different reflectivity or speckle probability distribution models
[1]. Many state-of-the-art single-image despeckling methods
perform a weighted average of some surrounding pixels values
to estimate speckle-free values. This can induce a bias (a
spatial resolution loss) when participating pixel candidates are
not well selected or the corresponding weights are not well
assigned. In addition, even using powerful spatial denoising
approaches (such as SAR-BM3D [11] or NL-SAR [9]), the
smallest and least contrasted structures can be damaged.

Recently, convolutional neural networks have shown a high
capability of denoising data affected by additive white Gaus-
sian noise (AWGN) [12]. Application to SAR images has also
been proposed, either through homomorphic approach [13]
or directly applying Gamma distribution based methods [14].
Unlike traditional SAR image denoising approaches, these
methods predict the noise-free value through the estimation of
the speckle component. These recent techniques reach compa-
rable despeckling results w.r.t. state-of-the-art approaches, both
in terms of signal to noise ratio (simulated data) and spatial
feature preservation. However, the training of these networks
is time consuming.

With the launch of new generations of satellite radar
systems (Cosmo-SkyMed, TerraSAR-X, ALOS-2, Sentinel-
1, etc.) [15], more and more SAR images, with shorter
revisit time or higher resolution, are now available. With
multi-temporal images, both spatial and temporal information
can be exploited in the denoising process, which gives the
potential of providing better denoising results than using only
a single image. This is the path followed by several kinds
of multi-temporal denoising methods, proposing temporal
weighted average [16], [17], [18], temporal weighted aver-
age in transformed domain (M-TSF [19] and MSAR-BM3D
[20]), change detection aware multi-temporal average (Lê’s
method [21], [22] and 2SPPB [23]) and filtering using three-
dimensional adaptive neighborhoods [24], [25]. A drawback
of such approaches is the increased computational complexity
with longer time series.

Multi-temporal denoising methods take advantage of the
increasing availability of SAR image time-series to solve
the spatial denoising problems, for the benefit of resolution
preservation. Most of multi-temporal denoising methods use
the whole time series in order to denoise a given image. In this
paper, we take a different approach by forming a summary of
the multi-temporal series through a “super-image”, and using
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Fig. 1. Multi-temporal SAR image denoising framework. Using yt for the calculation of super-image ûSI is optional.

this “super-image” to denoise the SAR images at each date.
This ratio-based multi-temporal denoising method fully

exploits the significant information of the multi-temporal stack
through the “super-image”. After forming the ratio image
between the noisy image and the “super-image”, the proposed
method takes advantage of the state-of-the-art single-image
speckle reduction methods to denoise the ratio image. We
consider multi-temporal images acquired on the same orbit
(i.e., either all ascending orbits, or all descending orbits),
with similar incidence angles, and which have been accurately
registered [26].

The contributions of this paper are the following:
• we provide a generic ratio-based multi-temporal denois-

ing method, called RABASAR, that can embed any state-
of-the-art speckle reduction method designed to process
a single SAR image;

• we demonstrate the interest of the proposed method on
synthetic and real SAR time series.

The remainder of this paper is organized as follows. In
section II, we introduce the general framework of the pro-
posed method. Section III presents different ways to compute
the “super-image”. Then the filtering of the ratio image is
described in section IV. Experimental results are presented
in section V. Finally, some conclusions and perspectives are
drawn in section VI.

II. PRINCIPLE OF THE PROPOSED METHOD

Temporal averaging (also called temporal multi-looking) of
multi-temporal stacks of images produces images with re-
duced speckle where spatial resolution is preserved. Temporal
averaging provides a so-called “super-image”. In this paper,
we propose to exploit this super-image to build a ratio-based
denoising framework (Fig.1).

The proposed method mainly contains three steps.
1) In the first step, a super-image is calculated using a

series of well registered and calibrated SAR images.
Averaging temporal intensity samples is the simplest
way to obtain an image with speckle reduction. It
corresponds to the maximum likelihood estimation of
the reflectivity if the variables are i.i.d. (independent
and identically distributed, i.e. if temporal fluctuations
are independent and only caused by fully-developed
speckle). In practice, the influence of the SAR imaging
system and the changes of the remote sensing areas (e.g.
farmland or building areas) should be taken into account.

Even for temporally stable areas, because of possible
different temporal correlations, the noise reduction may
be variable in space.
For areas with seasonal changes, a typical evolution
of vegetation areas, the changed areas are rather ho-
mogeneously distributed and with low fluctuations. On
the contrary, for abrupt or impulsive changes [27], as
often caused by human activities, the mean value may
be seriously influenced by changes. Hence, it can be
interesting to average unchanged or similar temporal
points through binary weights, as done for instance in
[23], [22]. Computation of the super-image, denoted as
ûSI in the sequel, will be presented in Section III.

2) In the second step, using the obtained super-image, we
calculate the ratio Rt between the image yt at time t
and the super-image:

Rt =
yt
ûSI

(1)

Rt is named the ratio image at time t; it contains the
residual speckle noise between the two images, and the
radiometric shifts when changes occurs.
In stable areas, if we have an infinite series of images,
the super image will be close to the reflectivity of this
area with ûSI = u [28]. Then, the ratio contains fully
developed speckle approximately following a Gamma
distribution with unit mean. On the contrary, in case of a
change in some area at time t, it is likely that this change
will appear in the ratio image. Any speckle filtering
technique can be applied to the ratio image. A good
speckle reduction method is expected to preserve the
possible changes at time t. This point will be discussed
in Section IV.

3) In the third step, the filtered image is recovered by
multiplying the denoised ratio image with the original
super-image. Experimental results on simulated and real
SAR data will be presented in section V.

III. SUPER-IMAGE COMPUTATION

With a multi-temporal stack, the super-image can be cal-
culated through different ways. First, different Hölder means
(such as arithmetic or geometric means) could be chosen; then
such means may be applied either on the intensity data or
on the amplitude data. We may expect from these choices to
enhance different pieces of information [29]. In this paper,
registered and radiometrically corrected intensity SAR images
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are used. We propose to use the arithmetic mean for its good
properties [29] with the option of using binary weights to
discard the intensity at some dates when a change occurred.

A. Statistics of SAR images

We briefly recall in this section the statistics of fully
developed speckle. Under Goodman’s hypothesis [30], the
fully developed intensity speckle follows a Gamma distribution
G[u, L] depending on the number of looks L and the mean
reflectivity u of the scene:

G[u, L](y) =
L

uΓ(L)

(
Ly

u

)L−1
e−

Ly
u (2)

Speckle in coherent processed SAR data acts like a mul-
tiplicative noise and the speckle model can be expressed as
[4]:

y = uv (3)

with
E[y] = u (4)

and
Var[y] = u2/L, (5)

and v follows a Gamma distribution G[1, L], E[·] is the
expectation operator, Var[·] represents the variance operator.
With the increase of the number of looks L, the variance
u2/L decreases. A multiplicative signal model can be used
to describe both intensity and amplitude data.

B. Arithmetic mean

Given a time series of M intensity values [y1(s), y2(s),
y3(s), · · ·, yM (s)] indexed by time t, the arithmetic mean is
calculated at location s by:

ûAM (s) =
1

M

M∑
t=1

yt(s) 1 ≤ t ≤M (6)

Theoretically, with i) no change in the time series [u1(s) =
u2(s) = · · · = ut(s) = · · · = uM (s)] and ii) M large
enough, averaging the temporal intensity data is a simple yet
effective approach to reduce the speckle [31]. The arithmetic
mean ûAM (s) is equal to the maximum likelihood estimation
(no matter how large M is) of u(s), and the multi-look image
ûAM follows a Gamma distribution G[u, LM ]. In practice, the
resulting equivalent number of looks (ENL) may be less than
the theoretical value (L×M with i.i.d. variables) if there are
temporal correlations in the time series, especially in case of
images in interferometric configuration.

When there are changes in the time series samples
{yt(s)}Mt=1, the arithmetic mean ûAM (s) has no physical
meaning and therefore does not correspond to the scene
reflectivity (since it varies in time). We can account for this
mismatch between the temporal average and the underlying
reflectivity through a correcting factor or by averaging only
the unchanged temporal samples.

C. Binary weighted arithmetic mean

Instead of computing blindly the super-image on the time
series and then relying on the ratio image to recover the
reflectivity of each specific date, another option is to compute
a dedicated super-image. In this case, only samples with
similar and stable reflectivities are averaged. To detect these
samples, a patch-based similarity estimation wt,t′(s) based on
the generalized likelihood ratio (GLR) test may be used.

It uses pixel-wise comparisons on a patch taken at date t
and date t′ with the following formula [8], [23]:

wt,t′(s) =
∑
k

(
log

(√
yt(s+ k)

yt′(s+ k)
+

√
yt′(s+ k)

yt(s+ k)

)
−log 2

)
(7)

where yt(s+ k) is the value in the noisy patch at date t. The
sum is taken over all pixel shifts k such that pixels with index
s + k are located inside a patch centered on s (small square
window). Based on the analysis in [8], a size of 7×7 is chosen
for the patch. Then, a binary weight ϕ[wt,t′(s)], expressing
whether there are temporal changes or not, is computed as:

ϕ[wt,t′(s)] =

{
1, if wt,t′(s) < σ
0, otherwise

(8)

with σ as a threshold. σ is computed with pure speckle data as
σ = quantile(wt,t′(s), α), with a value α taken as α = 0.92
as proposed in [8].

Then, the binary weighted arithmetic mean (denoted by
BWAM in the sequel) is calculated through:

uBWAM
t (s) =

1∑M
t′=1 ϕ[wt,t′(s)]

M∑
t′=1

ϕ[wt,t′(s)]yt′(s) (9)

The computation of this BWAM image should be done for
each date and each pixel in the temporal stack through a patch-
based comparison of the whole stack. This uBWAM

t image is
more faithful to the reflectivity of the image at time t at the
cost of an increased computational time and a reduced number
of looks in uBWAM

t . The interest of using such a temporal
mean will be evaluated in Section V.

D. Denoising the super-image

When the number of temporal candidates used for the
computation of the super-image is not large enough, the
spatial information can be taken into account to improve
the estimation of the speckle-free signal. The super-image
may have a spatially varying ENL because of unstable areas,
because of varying coherence, and because of the use of the
binary weights. Let L denote the local equivalent number
of looks. To robustly estimate LAM in the arithmetic mean
image calculated with media or high resolution temporal SAR
images, the log-cumulant method is used [32].

Empirical expressions for the first and second order log-
cumulant estimators are (for N samples):

k̂1 =
1

N

N∑
i=1

[log(
√
ûi)] (10)
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(a) (b) (c) (d)
Fig. 2. (a) Sentinel-1 noisy image, (b) Arithmetic mean image, (c) Ratio image, (d) MuLoG-BM3D denoised result on ratio image. Appearing (dark areas
in (d)) and disappearing buildings (clear areas) are located in the middle of the image.

k̂2 =
1

N

N∑
i=1

[log(
√
ûi)− k̂1]2 (11)

Then, we can obtain an estimation of the ENL using the
following relationship (theoretical expression):

k̂2 =
1

4
ψ(1, L̂AM ) (12)

where ψ(1, L̂AM ) is the first-order Polygamma function [32].
Note that the traditional estimation method (by means of the
ratio E(yi)

2/Var(yi)), the moment estimation method or the
maximum likelihood (ML) estimation method could also be
used for the ENL estimation [33].

This ENL is locally estimated using a sliding window, and it
is an important parameter in statistical modeling of multilook
SAR images. A global ENL for the super-image may be
deduced from the local ENL as its maximum value. In practice,
this global value may be useful to speed up a denoising process
applied on the super-image. In this paper, the arithmetic mean
image is filtered using MuLoG-BM3D [34]. Any other spatial
adaptive denoising method could be used.

Therefore, 4 super-images can be computed: arithmetic
mean image (AM, according to Eq.(6)), binary weighted
arithmetic mean image (BWAM, according to Eq.(9)) and their
denoised versions denoted as DAM and DBWAM. The interest
of this step will be evaluated in Section V.

IV. RATIO IMAGE DENOISING

The ratio image (Eq.(1)) should contain both the variations
between the super-image ûSI and ut and the speckle of the
noisy image yt. Nonetheless, the spatial homogeneity is largely
improved in the ratio image compared to the original noisy
image.

At this point, any denoising method can be used to de-
noise the ratio image Rt. In this paper, MuLoG [34] has
been chosen. Unlike homomorphic approaches, and inspired
by [35], MuLoG relies on the Fisher-Tippett distribution to
approximate the reflectivities of the log-transformed data. To
lighten the notation, R is the ratio image of a date t, r = logR
and P is the true ratio with ρ = logP .

Its estimation is based on a MAP optimization approach as:

ρ ∈ arg min
ρ∈Rn

(− log pr(r|ρ) +R(ρ)) (13)

with

− log pr(r|ρ) = L

N∑
h=1

ρh + erh−ρh + Cst (14)

and R(ρ) = − log pρ(ρ) is a prior term enforcing some
regularity on the solution, N is the number of pixels and Cst
is the constant term. Then, the denoised data is reconstructed
by P̂ = exp(ρ). In this paper, we consider MuLoG+BM3D
that uses BM3D [36] as an implicit regularization term R(ρ).

An example is shown in Fig.2. A typical filtering result on
a ratio image is presented on Fig.2(d) along with the original
image, super-image and the ratio image.

After obtaining the estimated noise free value P̂t of the
ratio, we obtain the denoised image P̂t through:

ût = ûSI P̂t (15)

Algorithm Multi-temporal speckle reduction (RABASAR)
Input: M co-registered SAR images {y1, y2, · · · , yM}
Output: M images with reduced speckle {û1, û2, · · · , ûM}

1: Step 1: computation of the super-image
2: for each pixel s do
3: û(s)← 1

M

∑M
t=1 yt(s)

4: end for
5: (optional: denoise the multi-looked image)
6: if denoise super-image then
7: L̂← estimate_looks

(
û
)

8: û← MuLoG_BM3D(û, L = L̂)
9: end if

10: for t from 1 to M do
11: Step 2: denoising of the ratio image
12: P̂t ← MuLoG_BM3D(yt/û, L = 1)
13: Step 3: computation of the restored image
14: ût ← û · P̂t
15: end for
16: return {û1, û2, · · · , ûM}

V. EXPERIMENTAL RESULTS

To evaluate the performances of the proposed method,
different experiments have been conducted on simulated and
real SAR images. The influence of different super-images
on the RABASAR denoising results are commented (section
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 3. Different types of images: (a) optical image, (b-e) arithmetic mean of Sentinel-1 images over different land covers, (f-g) noisy and arithmetic mean
of TerraSAR-X images, (h-j) arithmetic mean of TerraSAR-X images over different areas. Different colors represent different changes: Green=farmland,
yellow=forest, red=disappearing then appearing, blue=appearing then disappearing, cyan=cycle changes.

V-C). Then, the ratio-based multi-temporal denoising methods
are compared with some methods selected from the literature:
UTA [16], [17], NLTF[20], 2SPPB [23] and MSAR-BM3D
[20] (section V-D).

A. Data presentation

1) Real data: The proposed methods are tested on a time
series of 69 descending Sentinel-1 IW SLC Level-1 images
acquired from December 24, 2014 to May 6, 2017 with VV
polarization over Saclay area, South of Paris1. Saclay plateau is
mostly an agricultural area with pieces of forests and dispersed
academic buildings. In the last five years, many new buildings
and infrastructures have been under development.

In addition, 26 single-look TerraSAR-X images (13 images
are sensed in 2009 and the other 13 images in 2011) acquired
over Saint-Gervais-les-Bains, South-East of Geneva, (project
DLR-MTH0232) are used. These images are taken over a
highly mountainous countryside, with a narrow inhabited
valley concentrating many human artifacts (roads, bridges,
dams).

2) Simulated data: Simulated SAR images are usually
obtained through equation (3), by multiplying a reflectivity
map with a random Gamma distributed noise.

Many simulations are based on reflectivity maps obtained
from optical images. However, real SAR images exhibit strong
and persistent scatterers, especially in urban areas which
can hardly be simulated using optical images. Therefore, we
propose to use the arithmetic mean image of long time-series
of SAR images, considered as a noise free image (a reflectivity
map u) to create realistic simulations of SAR images. This
map u is multiplied by a gamma distributed noise vt providing

1All the Sentinel-1 images can be downloaded from Copernicus
Open Access Hub (https://sentinels.copernicus.eu/web/sentinel/ sentinel-data-
access/accessto-sentinel-data).

an image yt = uvt of the series. For specific applications,
dedicated sequences will be created over various areas: forests,
farmlands, building areas etc. as shown in Fig.3. Different
temporal changes may also be simulated as shown in (Fig.3 (e)
and (j)). Changed values are extracted from the corresponding
real SAR time series.

It often happens that SAR pixels are not spatially inde-
pendent because of a slight over-sampling creating a spatial
correlation. This spatial correlation should be taken into ac-
count during the parameter estimation. However, most of the
denoising methods are based on the hypothesis that the speckle
component is i.i.d.. When blindly applied to correlated data,
reduced performances may be expected from these methods.
Therefore, we recommend to perform a spatial decorrelation
before despeckling. In this paper, the noisy TerraSAR-X
images are decorrelated using the method proposed in [37] and
the Sentinel-1 images are decorrelated by resampling because
of its special acquisition model (the beam both steering in
range direction and steering from backward to forward in
azimuth direction). All the real SAR images are well registered
using subpixel image registration applied on the single look
complex data [26].

B. Evaluation methods
Measurement of speckle reduction performances is a chal-

lenging task, especially when noise-free data are unavailable.
Visually checking the despeckling results is an immediate and
important way for quality evaluation, but it lacks objectivity.
To overcome this limitation, peak signal-noise-ratio (PSNR)
and structure similarity (SSIM) indexes may be used, but their
limits have been abundantly discussed.

1) PSNR: Peak signal-noise-ratio: PSNR is a commonly
used approach to evaluate the quality of noise-free reflectivity
restoration results. The denoising results can be quantified by
the PSNR with:
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Fig. 4. RABASAR performances with different super-images. (a) PSNR in case of images without change (Fig.3(b)), (b) MSSIM under the same conditions.
(c) PSNR as a function of the number of images in the case of existing changes in the stack (Fig.3(e)), (d) MSSIM in the same conditions,

PSNR = 10 · log10

|uA|2max
E[(uA(s)− ûA(s))2]

(16)

where |uA|max is the maximum amplitude value in the noise
free data, E[·] represents the spatial average and ûA is the
denoised amplitude value.

2) MSSIM: Mean structure similarity index: To evaluate the
preservation of image features, SSIM index [38] (structural
similarity index measurement) is often preferred to PSNR.
From the SSIM, we derive the mean structural similarity index
measurement (MSSIM) values which provide a comprehensive
measure over the whole image:

MSSIM =
1

N

N∑
i=1

[
2 · Ê[uA] · Ê[ûA] + α1

Ê[u2A] + Ê[û2A] + α1

2 · Ĉov[uA, ûA] + α2

V̂ar[uA] + V̂ar[ûA] + α2

]
where uA and ûA are noise free and denoised patches, Cov[·, ·]
is the measure of covariance, α1 and α2 are suitable constants,
N is the number of local windows in the image.

C. Which super-image gives the best denoising?

As proposed earlier (see Section III-D), different super-
images (AM, BWAM and their spatially denoised versions)
may be computed with the same multi-temporal stack. This
section presents quantitative (Fig.4) and qualitative (Fig.5)
results of the denoising stage, obtained by using different
super-images with different stack lengths. The parameters used
with each super-image are shown in Table I. The ENL of the
super-image is estimated using the log-cumulant method with
a window size 30 × 30, and the maximum estimated ENL is
used. The ENL of the ratio image is supposed to be the same
as the one of the noisy image (L).

TABLE I
PARAMETER SETTING WITH DIFFERENT SUPER-IMAGES (L IS THE ENL OF

THE NOISY IMAGE)

Super-image Denoising step ENL Similarity
(MuLog-BM3D) estimation window [39]

AM Step 2 L
DAM Step 1-2 log-cumulant
BWAM Step 2 L 7×7
DBWAM Step 1-2 log-cumulant 7×7
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(a) (b) (c) (d)
Fig. 5. (a-d) RABASAR denoising results on real Sentinel-1 images over the Saclay area (higher row) and corresponding ratio-images (lower row) based on
the use of: (a) AM, (b) DAM, (c) BWAM, (d) DBWAM. 69 Sentinel-1 images are used.

1) Using synthetic Sentinel-1 images: Synthetic images
allow to evaluate numerically the performances obtained with
four different super-images by measuring PSNR and MSSIM
values. The number of images in the time series varies from
5 to 95.

For temporal images without changes (Fig.4(a-b)), using
denoised super-images provides better PSNR and MSSIM
values when using a small number of images, but this benefit
disappears with long stacks of images (more than 60). When
using denoised super-images, the obtained PSNR/MSSIM val-
ues are seriously influenced by the used ENL. Smaller ENL
estimation window size is recommended when fewer temporal
images are available. Because of the i.i.d. time series variables,
we set the ENL equals to the number of used temporal
synthetic images. We recommend using a spatially adaptive
ENL for the denoising of BWAM, because different number
of temporal samples may be used for its computation.

When changes occur (Fig.4(c-d)), RABASAR can provide
better PSNR with AM and DAM for short stacks (under
30 images). All the strategies are almost similar when more
images are used. With temporally changed images, RABASAR
PSNR values are much lower than that using temporally stable
images. Using BWAM image provides slightly worse MSSIM
values while using DAM provides better MSSIM.

2) Using Sentinel-1 images: The temporal series of 69
Sentinel-1 images on the Saclay area is used to test the
method on real images. Figure 5 can be used to visually
assess the noise reduction efficiency of using different “super-
images”. RABASAR provides good denoising results with the
four different super-images. The use of an additional spatial
filtering step to form the super-image seems beneficial in terms
of restoration quality: the obtained images are smoother.

For results which used AM and DAM, small areas with low
values were sometimes smoothed leading to the apparition of
new points in the denoised results (Fig.5(a-b) red rectangular).

This phenomenon is obvious for impulsive and abrupt changes
in building areas. Using BWAM and DBWAM reduces this
problem (Fig.5(c-d)). In some changing parts of the image,
using BWAM, however, leads to poor filtering results because
of using only few similar points to compute the super-image.

3) Computation time: The computation time of the al-
gorithm depends on the adopted strategy, i.e. the type of
super-image and the choice of the spatial denoising method.
Using denoised super-images is far more time-consuming than
using unprocessed super-images. Additionally, because of the
dedicated super-image computed for each noisy data, using
BWAM image takes more time than using AM.

D. Denoising performances of RABASAR compared to exist-
ing methods

The proposed method is compared with state-of-the-art
multi-temporal denoising methods, both with synthetic SAR
and with real SAR images. Numerical and visual results
are provided when comparing RABASAR with the chosen
methods: UTA [17], NLTF [20], 2SPPB [23] and MSAR-
BM3D [20].

1) Quantitative comparison: As in the previous sections, to
quantitatively compare the filtering performance of these meth-
ods, PSNR and MSSIM are computed. ROC curves are also
presented, but with only RABASAR-AM and RABASAR-
DAM to make the demonstration clearer. Since MSAR-BM3D
released code requires a number of time series equal to a
power of 2, we only tested such cases, to keep the original
performances of this method.

To make a fair comparison with other methods, three kinds
of temporal data are tested (Fig.6). In the case where no change
or bright echo exist in the simulated image, we see, from figure
6, that RABASAR generally provides better PSNR than other
filtering methods. This may be explained because, under these
hypotheses, the ratio image is very homogeneous.
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TABLE II
NUMERICAL RESULTS PROVIDED BY DIFFERENT METHODS WITH 32 IMAGES IN THE SERIES. EVALUATION IS MADE BY PSNR AND MSSIM. FOR PSNR

AND MSSIM, LARGER VALUES EXPRESS BETTER DENOISING RESULTS.

Sentinel-1 Evaluation UTA NLTF 2SPPB MSAR RABASAR
methods -BM3D -AM -DAM -BWAM -DBWAM

without PSNR 25.65 19.00 25.17 21.03 27.56 29.10 26.64 28.40
changes MSSIM 0.84 0.82 0.81 0.67 0.86 0.89 0.84 0.88

with PSNR 13.01 6.88 13.11 7.12 19.34 20.10 19.00 19.50
changes MSSIM 0.88 0.77 0.80 0.68 0.90 0.91 0.88 0.90

Num

0 10 20 30 40 50 60 70

P
S

N
R

5

10

15

20

25

30

UTA

NLTF

2SPPB

MSAR-BM3D

RABASAR-AM

RABASAR-DAM

Num

0 10 20 30 40 50 60 70

P
S

N
R

5

10

15

20

25

30

UTA

NLTF

2SPPB

MSAR-BM3D

RABASAR-AM

RABASAR-DAM

Num

0 10 20 30 40 50 60 70

P
S

N
R

5

10

15

20

25

30

UTA

NLTF

2SPPB

MSAR-BM3D

RABASAR-AM

RABASAR-DAM

Num

0 10 20 30 40 50 60 70

M
S

S
IM

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

UTA

NLTF

2SPPB

MSAR-BM3D

RABASAR-AM

RABASAR-DAM

Num

0 10 20 30 40 50 60 70

M
S

S
IM

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

UTA

NLTF

2SPPB

MSAR-BM3D

RABASAR-AM

RABASAR-DAM

Num

0 10 20 30 40 50 60 70

M
S

S
IM

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

UTA

NLTF

2SPPB

MSAR-BM3D

RABASAR-AM

RABASAR-DAM

(a) (b) (c)
Fig. 6. Comparison of different temporal denoising methods: UTA, NLTF, 2SPPB, MSAR-BM3D, RABASAR-AM and RABASAR-DAM. PSNR (upper row)
and MSSIM (lower row) as a function of the number of images: (a) using temporal simulated data without changes (Fig.3(a)), (b) with unchanged realistic
synthetic SAR images, (c) with changed realistic synthetic SAR images.

With fewer images in the stack, MSAR-BM3D and 2SPPB
also provide competitive PSNR and MSSIM. However, with
the increase of the number of images, MSAR-BM3D curve
does not rise as fast as 2SPPB. When using less than 4
synthetic images, MSAR-BM3D provides the best MSSIM
values.

With an increasing number of images without change, UTA
PSNR and MSSIM values keep increasing. Due to the use of
a sliding window to estimate the reflectivity, UTA does not
give good results when few images are used. Since there are
large building areas in the time series with changes, it suffers
from blurred boundaries. Table II presents some results about
PSNR and MSSIM results.

2) Synthetic SAR data with different ENL: To evaluate the
effects of the ENL on the denoising performances, different
denoising methods are applied on the data selected when
creating the simulated samples over various landscapes (see

Section V-A2). Results are presented in Table III. In the case
of long time series (here 64 temporal images are used), the
various RABASAR methods always provide better results than
other methods. When there are changes in the time series,
using BWAM may be better than using AM.

3) Comparison for real SAR image denoising: This section
presents results obtained when denoising real Sentinel-1 and
TerraSAR-X images. Since we do not have noise free images,
the denoised results are compared using their ratio with noisy
image.

Compared to 2SPPB and MSAR-BM3D methods,
RABASAR-DAM and RABASAR-DBWAM provide better
denoising results by taking both the ratio results and the
texture characteristics into account. 2SPPB method does not
give good results in homogeneous areas, which leads to an
obvious bias in the ratio image. For example, there are two
bright areas in the ratio of 2SPPB denoised Sentinel-1 image
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TABLE III
PSNR-MSSIM VALUES PROVIDED BY DIFFERENT DENOISING METHODS USING DIFFERENT DATA ISSUED FROM THE SIMULATED SAR IMAGES (SEE

FIGURE 3). THE NUMBER OF IMAGES IN THE SERIES IS 64. SENTINEL-1 IMAGES ARE EXPRESSED BY S-, TERRASAR-X IMAGES ARE DENOTED WITH T-.

Data ENL UTA 2SPPB NLTF MSAR-BM3D RABASAR-AM RABASAR-BWAM
S-farmland 1 27.98-0.88 27.52-0.83 20.69-0.86 23.19-0.62 30.50-0.90 29.74-0.88
S-farmland 4 33.62-0.97 30.13-0.88 29.52-0.97 26.90-0.78 36.55-0.97 36.55-0.97
S-farmland 8 37.13-0.98 31.80-0.89 35.48-0.99 29.36-0.85 39.50-0.98 39.50-0.99
S-building 1 20.47-0.94 18.68-0.89 10.57-0.76 13.36-0.77 26.17-0.96 25.02-0.95
S-building 4 25.84-0.98 26.94-0.94 19.73-0.98 19.26-0.89 31.97-0.99 31.97-0.99
S-building 8 28.86-0.99 31.84-0.96 23.69-0.99 21.66-0.92 35.72-0.99 35.67-0.99
S-changes 1 10.03-0.90 17.67-0.84 06.18-0.77 05.68-0.69 19.59-0.94 21.14-0.93
S-changes 4 14.17-0.96 23.88-0.89 11.50-0.96 12.19-0.85 24.97-0.98 26.05-0.98
S-changes 8 16.48-0.97 27.17-0.93 14.93-0.98 16.34-0.90 27.87-0.99 28.86-0.99
T-farmland 1 27.79-0.89 27.34-0.85 21.26-0.87 24.22-0.69 30.57-0.92 29.29-0.89
T-farmland 4 33.49-0.97 29.34-0.89 29.62-0.98 26.95-0.82 36.24-0.98 36.24-0.98
T-farmland 8 36.47-0.98 31.00-0.91 35.94-0.99 29.32-0.87 39.54-0.99 39.54-0.99
T-building 1 21.32-0.94 19.43-0.90 11.36-0.80 14.15-0.81 26.04-0.96 24.83-0.95
T-building 4 26.09-0.98 25.73-0.94 21.60-0.99 19.16-0.90 31.83-0.99 31.83-0.99
T-building 8 28.34-0.99 30.13-0.96 26.71-0.99 21.50-0.94 34.96-0.99 34.96-0.99
T-changes 1 21.16-0.94 19.07-0.85 12.60-0.74 15.45-0.76 27.00-0.96 26.20-0.95
T-changes 4 25.39-0.98 26.42-0.93 20.26-0.97 19.46-0.88 32.92-0.98 32.86-0.98
T-changes 8 29.34-0.99 31.43-0.96 24.44-0.98 22.27-0.92 35.99-0.99 36.00-0.99

(a) (b) (c) (d)
Fig. 7. Denoising real Sentinel-1 images over the region of Saclay (the original noisy image is available in figure 2(a)) : (a) filtered with 2SPPB, (b) with
MSAR-BM3D, (c) with RABASAR-DAM, (d) with RABASAR-DBWAM. Top row: denoised results; Lower row: residual ratio images.

(Fig.7(a)). Since MSAR-BM3D method detects the bright
points in advance and prohibits any denoising for these points
[20], building areas in the ratio image are very smooth and
their denoising results are still influenced by noise (Fig.7(b)
and Fig.8(b)).

VI. CONCLUSION AND FUTURE WORK

This paper has proposed a ratio-based multi-temporal de-
noising framework. During the restoration of each SAR image,
it exploits the temporal information through a super-image.
The use of few kinds of super-images has been analyzed.
RABASAR can provide better PSNR and MSSIM values when
using a spatially denoised super-image. With the increase of

the number of images in the time series, the differences of
using different super-images decrease. When there are changes
in the time series, using a binary weighted arithmetic mean
can also provide good results. Based on the processing of
simulated time-series, actual Sentinel-1 stacks and TerraSAR-
X stacks, the qualitative and quantitative comparison with
UTA, NLTF, MSAR-BM3D and 2SPPB methods showed the
potential of RABASAR to better preserve structures in multi-
temporal SAR images while efficiently removing speckle.
Besides, the super-image can be easily updated when a new
data becomes available so as to process new images on-line.

The proposed method can use other super-images such
as geometric mean, quadratic mean, etc., without modifying
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(a) (b) (c) (d)
Fig. 8. Different denoising results with TerraSAR-X images over Sain-Gervais. The original noisy image is available in figure 3(f). First row: the denoised
images; Second row: residual ratio images. (a) with 2SPPB, (b) with MSAR-BM3D, (c) with RABASAR-DAM, (d) with RABASAR-DBWAM.

the calculation procedure. The ratio image denoising method
can be replaced by any other single-image speckle reduction
method. Future work will be devoted to the updating frame-
work, specially for the “re-computation” of the super-image
and to the application of denoised results.
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